翻訳と辞書 |
Logarithmically convex function : ウィキペディア英語版 | Logarithmically convex function In mathematics, a function ''f'' defined on a convex subset of a real vector space and taking positive values is said to be logarithmically convex or superconvex〔Kingman, J.F.C. 1961. A convexity property of positive matrices. Quart. J. Math. Oxford (2) 12,283-284.〕 if , the composition of the logarithmic function with ''f'', is a convex function. In effect the logarithm drastically slows down the growth of the original function , so if the composition still retains the convexity property, this must mean that the original function was 'really convex' to begin with, hence the term superconvex. A logarithmically convex function ''f'' is a convex function since it is the composite of the increasing convex function and the function , which is supposed convex. The converse is not always true: for example is a convex function, but is not a convex function and thus is not logarithmically convex. On the other hand, is logarithmically convex since is convex. An important example of a logarithmically convex function is the gamma function on the positive reals (see also the Bohr–Mollerup theorem). ==References==
* John B. Conway. ''Functions of One Complex Variable I'', second edition. Springer-Verlag, 1995. ISBN 0-387-90328-3. * Stephen Boyd and Lieven Vandenberghe. ''Convex Optimization''. Cambridge University Press, 2004. ISBN 9780521833783.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Logarithmically convex function」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|